Pandas GroupBy的操作實例
任何groupby操作都會對原始對象進(jìn)行以下操作:
拆分對象 應(yīng)用函數(shù) 合并結(jié)果
在許多情況下,我們將數(shù)據(jù)分成幾組,然后在每個子集上應(yīng)用一些功能。在Apply功能中,我們可以執(zhí)行以下操作-
聚合 ? 計算匯總統(tǒng)計 轉(zhuǎn)換 ? 分組操作 過濾 ? 在某些條件下過濾數(shù)據(jù)
現(xiàn)在我們創(chuàng)建一個DataFrame對象并對其執(zhí)行所有操作。
#import the pandas library import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) print(df)
運(yùn)行結(jié)果如下:
Points Rank Team Year 0 876 1 Riders 2014 1 789 2 Riders 2015 2 863 2 Devils 2014 3 673 3 Devils 2015 4 741 3 Kings 2014 5 812 4 kings 2015 6 756 1 Kings 2016 7 788 1 Kings 2017 8 694 2 Riders 2016 9 701 4 Royals 2014 10 804 1 Royals 2015 11 690 2 Riders 2017
象可以拆分為任何對象。有多種分割對象的方法,例如:
obj.groupby('key') obj.groupby(['key1','key2']) obj.groupby(key,axis=1)
現(xiàn)在我們看看如何將分組對象應(yīng)用于DataFrame對象
# import the pandas library import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) print(df.groupby('Team'))
運(yùn)行結(jié)果如下:
# import the pandas library import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) print(df.groupby('Team').groups)
運(yùn)行結(jié)果如下:
{'Kings': Int64Index([4, 6, 7], dtype='int64'), 'Devils': Int64Index([2, 3], dtype='int64'), 'Riders': Int64Index([0, 1, 8, 11], dtype='int64'), 'Royals': Int64Index([9, 10], dtype='int64'), 'kings' : Int64Index([5], dtype='int64')}
用多列分組
# import the pandas library import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) print(df.groupby(['Team','Year']).groups)
運(yùn)行結(jié)果如下:
{('Kings', 2014): Int64Index([4], dtype='int64'), ('Royals', 2014): Int64Index([9], dtype='int64'), ('Riders', 2014): Int64Index([0], dtype='int64'), ('Riders', 2015): Int64Index([1], dtype='int64'), ('Kings', 2016): Int64Index([6], dtype='int64'), ('Riders', 2016): Int64Index([8], dtype='int64'), ('Riders', 2017): Int64Index([11], dtype='int64'), ('Devils', 2014): Int64Index([2], dtype='int64'), ('Devils', 2015): Int64Index([3], dtype='int64'), ('kings', 2015): Int64Index([5], dtype='int64'), ('Royals', 2015): Int64Index([10], dtype='int64'), ('Kings', 2017): Int64Index([7], dtype='int64')}
有了groupby對象,我們可以類似于itertools.obj遍歷該對象。
# import the pandas library import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) grouped = df.groupby('Year') for name,group in grouped: print(name) print(group)
運(yùn)行結(jié)果如下:
2014 Points Rank Team Year 0 876 1 Riders 2014 2 863 2 Devils 2014 4 741 3 Kings 2014 9 701 4 Royals 2014 2015 Points Rank Team Year 1 789 2 Riders 2015 3 673 3 Devils 2015 5 812 4 kings 2015 10 804 1 Royals 2015 2016 Points Rank Team Year 6 756 1 Kings 2016 8 694 2 Riders 2016 2017 Points Rank Team Year 7 788 1 Kings 2017 11 690 2 Riders 2017
默認(rèn)情況下,groupby對象的標(biāo)簽名稱與組名稱相同。
使用get_group()方法,我們可以選擇一個組。
# import the pandas library import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) grouped = df.groupby('Year') print(grouped.get_group(2014))
運(yùn)行結(jié)果如下:
Points Rank Team Year 0 876 1 Riders 2014 2 863 2 Devils 2014 4 741 3 Kings 2014 9 701 4 Royals 2014
聚合函數(shù)為每個組返回一個聚合值。一旦通過組對象被創(chuàng)建,幾個聚合操作可以在分組的數(shù)據(jù)來執(zhí)行。
一個明顯的方法是通過合計或等效的agg方法進(jìn)行合計。
# import the pandas library import pandas as pd import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) grouped = df.groupby('Year') print(grouped['Points'].agg(np.mean))
運(yùn)行結(jié)果如下:
Year 2014 795.25 2015 769.50 2016 725.00 2017 739.00 Name: Points, dtype: float64
查看每個組的大小的另一種方法是通過應(yīng)用size()函數(shù)。
import pandas as pd import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) Attribute Access in Python Pandas grouped = df.groupby('Team') print(grouped.agg(np.size))
運(yùn)行結(jié)果如下:
Points Rank Year Team Devils 2 2 2 Kings 3 3 3 Riders 4 4 4 Royals 2 2 2 kings 1 1 1
借助分組的Series,您還可以傳遞函數(shù)的列表或字典來進(jìn)行聚合,并生成DataFrame作為輸出-
# import the pandas library import pandas as pd import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) grouped = df.groupby('Team') print(grouped['Points'].agg([np.sum, np.mean, np.std]))
運(yùn)行結(jié)果如下:
Team sum mean std Devils 1536 768.000000 134.350288 Kings 2285 761.666667 24.006943 Riders 3049 762.250000 88.567771 Royals 1505 752.500000 72.831998 kings 812 812.000000 NaN
在組或列上進(jìn)行轉(zhuǎn)換將返回一個索引,該索引的大小與正在分組的對象的大小相同。因此,轉(zhuǎn)換應(yīng)返回與組塊大小相同的結(jié)果。
# import the pandas library import pandas as pd import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) grouped = df.groupby('Team') score = lambda x: (x - x.mean()) / x.std()*10 print(grouped.transform(score))
運(yùn)行結(jié)果如下:
Points Rank Year 0 12.843272 -15.000000 -11.618950 1 3.020286 5.000000 -3.872983 2 7.071068 -7.071068 -7.071068 3 -7.071068 7.071068 7.071068 4 -8.608621 11.547005 -10.910895 5 NaN NaN NaN 6 -2.360428 -5.773503 2.182179 7 10.969049 -5.773503 8.728716 8 -7.705963 5.000000 3.872983 9 -7.071068 7.071068 -7.071068 10 7.071068 -7.071068 7.071068 11 -8.157595 5.000000 11.618950
過濾根據(jù)定義的條件過濾數(shù)據(jù)并返回數(shù)據(jù)的子集。所述過濾器()函數(shù)是用來篩選數(shù)據(jù)。
import pandas as pd import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'], 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2], 'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) print(df.groupby('Team').filter(lambda x: len(x) >= 3))
運(yùn)行結(jié)果如下:
Points Rank Team Year 0 876 1 Riders 2014 1 789 2 Riders 2015 4 741 3 Kings 2014 6 756 1 Kings 2016 7 788 1 Kings 2017 8 694 2 Riders 2016 11 690 2 Riders 2017